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Abstract 

Background  Daily 24-h sleep–wake cycles have important implications for health, however researcher preferences in 
choice and location of wearable devices for behavior measurement can make 24-h cycles difficult to estimate. Further, 
missing data due to device malfunction, improper initialization, and/or the participant forgetting to wear one or both 
devices can complicate construction of daily behavioral compositions. The Method for Activity Sleep Harmonization 
(MASH) is a process that harmonizes data from two different devices using data from women who concurrently wore 
hip (waking) and wrist (sleep) devices for ≥ 4 days.

Methods  MASH was developed using data from 1285 older community-dwelling women (ages: 60–72 years) who 
concurrently wore a hip-worn ActiGraph GT3X + accelerometer (waking activity) and a wrist-worn Actiwatch 2 device 
(sleep) for ≥ 4 days (N = 10,123 days) at the same time. MASH is a two-tiered process using (1) scored sleep data (from 
Actiwatch) or (2) one-dimensional convolutional neural networks (1D CNN) to create predicted wake intervals, recon‑
cile sleep and activity data disagreement, and create day-level night-day-night pairings. MASH chooses between two 
different 1D CNN models based on data availability (ActiGraph + Actiwatch or ActiGraph-only). MASH was evaluated 
using Receiver Operating Characteristic (ROC) and Precision-Recall curves and sleep–wake intervals are compared 
before (pre-harmonization) and after MASH application.

Results  MASH 1D CNNs had excellent performance (ActiGraph + Actiwatch ROC-AUC = 0.991 and ActiGraph-only 
ROC-AUC = 0.983). After exclusions (partial wear [n = 1285], missing sleep data proceeding activity data [n = 269], 
and < 60 min sleep [n = 9]), 8560 days were used to show the utility of MASH. Of the 8560 days, 46.0% had ≥ 1-min 
disagreement between the devices or used the 1D CNN for sleep estimates. The MASH waking intervals were cor‑
rected (median minutes [IQR]: − 27.0 [− 115.0, 8.0]) relative to their pre-harmonization estimates. Most correction 
(− 18.0 [− 93.0, 2.0] minutes) was due to reducing sedentary behavior. The other waking behaviors were reduced a 
median (IQR) of − 1.0 (− 4.0, 1.0) minutes.
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Conclusions  Implementing MASH to harmonize concurrently worn hip and wrist devices can minimizes data loss 
and correct for disagreement between devices, ultimately improving accuracy of 24-h compositions necessary for 
time-use epidemiology.

Keyword  Actigraphy, Accelerometer, Sleep, Physical activity, Harmonization, Machine learning, 24-h activity, Time-
use epidemiology

Background
Time-use movement behaviors (e.g., sleep, sedentary 
behavior, and physical activity) [1–3] are modifiable fac-
tors associated with numerous health outcomes and all-
cause mortality [4–8]. Wearable accelerometers are used 
to measure time-use behaviors in free-living settings for 
a variety of populations [9, 10]. While there are numer-
ous consumer wearables (e.g., smart watches, fitness 
monitors) that have the capacity to estimate waking and 
sleep behaviors, potential issues such as user feedback 
biases and data extraction limit their research utility [11, 
12]. Additionally, consumer device (e.g., Apple, Fitbit, 
Garmin) accuracy depends on manufacturer and device 
type and are liable to algorithm changes that may occur 
numerous times throughout a study and without notifica-
tion to investigators, creating unmeasurable noise in the 
data [13–17]. Research-grade devices (e.g., ActiGraph, 
activPAL, Actiwatch, GENEActiv) provide substantial 
flexibility over consumer devices for processing and re-
processing of data to achieve current best-practices. 
However, devices for quantifying 24-h time-use behav-
iors can be placed on different anatomical locations (e.g., 
hip, wrist, thigh) and can be worn for different amounts 
of time (e.g., waking only, sleep only, 24 h/day) depend-
ing on the primary outcome(s) of interest. For example, 
researchers only interested in physical activity behaviors 
may utilize waking hip placements, whereas those inter-
ested in sedentary behaviors may want to consider pos-
tural positions and therefore need a device with a thigh 
placement, and those interested in sleep and/or circadian 
phase may utilize wrist placements [18, 19].

While a single wrist-worn device to capture movement 
behaviors have become increasingly popular, validity for 
measuring physical activity across the intensity spec-
trum against criterion measures (e.g., indirect calorim-
etry, doubly labeled water) has a wide range of accuracy 
(r = 0.17–0.93) [20]. This may lead some researchers to 
implement protocols that have participants switch the 
device between the hip (during the day) and wrist (at 
night), potentially increasing participant non-compliance 
[21], or consider protocols in which participants wear 
two or more devices concurrently, as in the current study. 
Other instances when a multiple-device protocol may be 
necessary include when multiple funded studies are being 
conducted simultaneously on a single study population, 

such as independently funded ancillary studies to large 
prospective cohorts with initial protocols proposing dif-
ferent devices. To reduce participant burden of wearing 
devices across many weeks of data collection, researchers 
may need to collaborate on a multiple-device wear proto-
col occurring over the course of one week, for example.

To characterize 24-h sleep–wake compositions for 
multiple-device protocols, approaches to harmonizing 
simultaneously collected data from multiple devices are 
needed. Unfortunately, data collection in naturalistic set-
tings increases the potential for protocol deviations that 
undermine accuracy. Specifically, missing data due to 
device malfunction, improper initialization, and/or the 
participant forgetting to wear one or both devices on 
one or more days complicates construction of day-night 
pairings. Another common issue researchers face is that 
despite being instructed to remove the device assessing 
waking activity during sleep periods, it is not uncommon 
for participants to wear these devices longer than neces-
sary (i.e., to bed), which can inflate estimates of seden-
tary behavior time. Through this lens, a multiple-device 
data harmonization process needs to facilitate two types 
of adjustment when sleep and activity data are joined 
for 24-h cycle development. First, the frame of refer-
ence for a day should be defined as the concatenation of 
a dynamic sleep–wake interval rather than a constrained 
period (e.g., midnight to midnight) that may be utilized 
when behaviors are viewed separately [18, 22]. Second, 
harmonization should correct any overlap between mon-
itors if there is behavior categorization disagreement, 
which may address situations where sleep is incorrectly 
classified as sedentary behavior or non-wear for one 
device. The latter could result in inaccuracies due to the 
device (still) recording after it was removed.

Herein, we present the Method for Activity Sleep Har-
monization (MASH) process, a novel method that har-
monizes data from multiple devices to create coherent 
sleep-activity pairings. MASH is a multiple device (hip 
and wrist) harmonization method that addresses many of 
the issues described above including, missing data (e.g., 
not wearing one device) or discordant behavior charac-
terization (e.g., one device characterizes sleep whereas 
the other device characterizes sedentary behavior), while 
also accommodating both regular and irregular sleep pat-
terns and minimizing data loss. We detail this method 
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using data from 1285 older women who concurrently 
wore an ActiGraph accelerometer on the hip and an Acti-
watch 2 device on the wrist for up to seven days as part of 
the Study of Women’s Health Across the Nation (SWAN).

Methods
Parent study
Data are from SWAN, an ongoing longitudinal multi-
site cohort study of women, which has been previously 
described [23]. Briefly, 3302 women ages 42–52  years 
(mean age ± standard deviation [SD]: 46.4 ± 2.7  years) 
were recruited from seven geographic sites across the 
U.S.: Boston, MA; Chicago, IL; Southeast area, Michi-
gan; Los Angeles, CA; Newark, NJ; Pittsburgh, PA; and 
Oakland, CA. Each site recruited White women and 
women of one other race/ethnicity. Cohort members 
have been followed through 16 follow-up visits approxi-
mately every year. Data for these analyses were collected 
at the SWAN follow-up visit 15 (2015–2017) (N = 2091 
women), in which a subsample of women were invited 
to concurrently wear two devices to quantify waking and 
sleep behaviors. A total of 1285 women had valid data 
for MASH development and evaluation (Fig.  1). Ethics 
approval was obtained from Institutional Review Boards 
at each of the seven SWAN sites and all participants pro-
vided written informed consent at each visit.

Data collection
Waking behaviors were quantified using the hip-worn 
ActiGraph wGT3X+ (ActiGraph, Pensacola, FL) device 
during all waking hours, except for water-based activities, 
for up to seven days. Raw acceleration data were sampled 
at 40 Hz and were downloaded and reintegrated to a 60-s 
epoch using ActiLife6 software [18]. Wear and non-wear 
(time periods in which participants did not wear the 
hip device, such as sleeping and water-based activities) 
were defined using the Choi algorithm with the ‘Physi-
calActivity’ R package [24]. Evenson vector magnitude 
(VM) cut point values [25] were used to classify minutes 
as sedentary behavior (< 76 VMct·min−1), low light (76 
to < 903 VMct·min−1) intensity (LLPA), high light (903 
to < 2075 VMct·min−1) intensity (HLPA),  and  moderate 
to vigorous intensity physical activity (MVPA) (≥ 2075 
VMct·min−1). The original 15-s thresholds were multi-
plied by four to account for the longer epoch (60-s), with 
slight adjustments to obtain mutually exclusive threshold 
ranges [26]. For the waking interval, days were classified 
as adherent if they had ≥ 600 min of wear time. Partici-
pants were included if they had ≥ 4 adherent days [18]. 
These days did not need to be consecutive.

The sleep interval was quantified using the wrist-worn 
Actiwatch 2 (Philips Respironics, Murrysville, PA) device 
worn for 24  h/day on the non-dominant wrist. Partici-
pants completed a diary and were asked to press an event 

Fig. 1  Participant flow diagram for data harmonization
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marker on the watch to indicate when they went to bed 
with the intention to sleep and when they rose from bed 
for the final time each day. The sleep diary included ques-
tions regarding when they got into bed, the time they 
tried to go to sleep, the time they woke up for the day, 
and the time when they rose from bed. The Actiwatch 
was set at 0.05 g for 3–11 Hz and data were sampled in 
60-s epochs. To determine total scored sleep time, the 
Actiwatch 2 data were processed, evaluated for quality, 
and scored with the event marker, default sleep detection 
algorithm (wake threshold: 40 ct/min) [27], and the sleep 
diary (if available) in Actiware 5.0.9 using procedures 
consistent with the Society of Behavioral Sleep Medicine 
guidelines [19]. Clock times for sleep onset (beginning 
of sleep interval) and sleep offset (end of sleep inter-
val) were determined using the start of the first minute 
(onset) or the last minute (offset) of 10 consecutive min-
utes of immobility. In addition, all sleep records were vis-
ually inspected for quality. Sleep records were removed 
if there was a Actiwatch malfunction, the Actiwatch was 
removed prior to sleep (e.g., non-wear), there was no/
poor sleep, or there was < 60  min of total scored sleep. 
These records are henceforth referred to as ‘valid scored 
sleep data’.

MASH development
MASH utilizes data from three sources: (1) ActiGraph–
count data from Axes 1–3, (2) Actiwatch–lux (white 
light) and count data, and (3) sleep onset and sleep offset 
clock times–from the valid scored sleep data correspond-
ing to the beginning (sleep onset) and end (sleep offset) 
of the primary sleep interval.

Harmonizing the sleep and activity data through 
MASH is a two-tiered approach that addresses two states 
of data availability. At its core, MASH reconciles the two 
datasets (i.e., ActiGraph- and Actiwatch-derived) by 
determining the bounds of the ‘waking interval’ for each 
day. The creation of these intervals represents the coher-
ent fusion of the two datasets: night(t-1)-day(t)-night(t). 
Any ‘correction’ to the waking behaviors (sedentary 
behavior, LLPA, HLPA, MVPA) associated with the 
imposition of these intervals resulted from a disagree-
ment between the sleep and activity data (e.g., the Acti-
watch says a person is asleep and the ActiGraph says they 
are engaging in sedentary behavior).

The first tier of MASH applies to instances where the 
24-h period has valid scored sleep data preceding and 
proceeding it. The wake interval is built using the pre-
vious day’s sleep onset time and the current day’s sleep 
offset time (night(t-1)-day(t)-night(t)). The second tier is 
used for all other instances where a wake interval does 
not have valid scored sleep data (e.g., missing sleep onset 
or sleep offset) immediately surrounding it. This typically 

occurred for nights that had a Actiwatch malfunction, 
the Actiwatch was removed, or there was no/poor sleep. 
In these cases, one-dimensional Convolutional Neural 
Network (1D CNN) models [28] are used. 1D CNNs were 
chosen because they have been previously employed on 
a variety of actigraphy data for algorithm detection [29–
31]. The 1D CNN models read the epoch-level ActiGraph 
and Actiwatch data and assign each epoch with a prob-
ability of being ‘within a wake interval’.

Two 1D CNN models were created for MASH. One 
1D CNN model accommodates both ActiGraph + Acti-
watch data, using data from both devices, and a separate 
1D CNN model uses ActiGraph-only data, for situations 
when the Actiwatch data were invalid or missing. Once 
the 1D CNN models generate epoch-level predictions, 
a simple optimization procedure is used to determine 
which clusters of epochs were most likely to represent 
the true waking interval. See Additional file 1: Appendix 
SA for a conceptual framework of the MASH process.

The 1D CNN models were trained using all days that 
had valid sleep data surrounding them. This sample was 
randomly divided into training, test, and validation data-
sets of mutually exclusive individuals. Each 1D CNN 
model created epoch-level predictions by evaluating cen-
tered 101-epoch windows of time surrounding the epoch 
in question [30]. We considered the costs of misclassify-
ing each epoch as ‘within wake interval’ or ‘outside wake 
interval’ as equal; therefore, the optimal cutoff probabil-
ity differentiating these statuses was determined using 
Youden’s J-statistic [32]. See Additional file 1: Appendix 
SB and SC for a detailed description of the approaches 
used to join the sleep and waking datasets and model 
building.

Removing the hip device at night prior to sleep onset
While developing MASH, we noticed the predicted sleep 
intervals resulting from the 1D CNNs were more likely to 
have shorter waking intervals (both pre-harmonization 
and after MASH application) and longer sleeping inter-
vals compared to valid scored sleep-derived intervals 
(e.g., Actiwatch dataset). While it could be that records 
missing sleep data might have shorter waking intervals 
because women who were less likely wear the Actiwatch 
2 wrist device might not be as diligent at wearing the 
ActiGraph hip device (thus having shorter wake inter-
vals), having longer sleep intervals is problematic because 
the act of removing the hip device was being confused 
with sleep onset.

For records that had valid scored sleep data, the aver-
age difference between removing the hip device and sleep 
onset was 44.4  min. For all records that did not have 
valid scored sleep data, the average duration of the sleep 
interval was 45.2 min longer (P < 0.001) than the intervals 
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where valid scored sleep data were present. Given the 
similar sizes of each effect, we therefore used records 
with valid scored sleep data to construct a bivariate prob-
ability distribution for wake interval length by the size of 
the difference between removing the hip device and sleep 
onset. The probability distribution was constructed using 
bounded 2-dimensional kernel density estimation with a 
minimum value equivalent to what was in the data and 
an imposed maximum value of 200  min for each varia-
ble (~ 3 SD from the mean of 44.4 min). Given the size of 
each wake interval, the probability distribution was used 
to generate an estimate of the amount of time that exists 
between removing the hip device and sleep onset. This 
estimate was added to the predicted timestamp for sleep 
onset (thus shortening the duration of the sleep interval).

This process was replicated ten times for all records 
that did not have scored sleep data indicating sleep onset. 
The MASH intervals were then constructed using the 
average of these ten samples. For more information on 
this process, please consult Additional file  1: Appendix 
SD  and SE. MASH user documentation is available at 
https://​github.​com/​jsw70/​MASH.

MASH evaluation
The full sample included 10,123 days with useable accel-
erometry data across 1285 participants. In order to eval-
uate MASH, for this analysis we focused on days that had 
full sleep–wake compositions consisting of a sleeping 
interval followed by a waking interval. This was done to 
maximize the number of full compositions we could eval-
uate. For example, while we could have chosen to view a 
composition as being a day proceeded by night (wake-
sleep) this would have led to fewer compositions for 
evaluation as the last day of data collection would likely 
be excluded (no sleep data). However, of note, the MASH 
process creates a bi-directional dataset that allows for 
flexibility in examining both sleep–wake or wake-sleep 
compositions.

To evaluate the harmonization process, three exclu-
sions were applied to the sleep–wake data: (1) the 
first day of data collection for the waking interval was 
removed because it was a partial day with the first 
instance of detected wear corresponding to when the 
devices were distributed and placed on the participant 
during the in-person exam visit (n = 1285 days), (2) any 
observation that did not have sleep data preceding the 
wake interval (n = 269), and (3) any instances where the 
sleep data was less than 60  min (n = 9). The analytical 
dataset for the evaluation of MASH included 8560 sleep–
wake compositions (Fig. 1).

Potential differences in participant characteris-
tics between the training, test, and validation datasets 
were assessed using t-tests for continuous variables or 

chi-square tests for categorical variables. Selected par-
ticipant characteristics included self-reported age (years), 
race/ethnicity (Black, Chinese, Hispanic, Japanese, 
White), education (< high school, high school, some col-
lege, college, post-college), self-rated health (poor, fair, 
good, very good, excellent), difficulty walking one mile 
(yes/no), and obesity (body mass index [BMI] ≥ 30  kg/
m2) calculated using height and weight at visit 15. Model 
performance was examined using the C-statistic, i.e., 
the area under the Receiver Operating Characteristic 
(AUC-ROC) curve. To account for slight data imbalance 
(roughly a 66/33 split between ‘within wake interval’ and 
‘outside of wake interval’), Precision-Recall curves were 
also used [33]. Paired t-tests were used to examine esti-
mates of time-use movement behaviors between days 
that were MASH-corrected and when the estimates were 
not corrected.

Results
1D CNN construction and accuracy
The sample used to build the prediction models included 
1112 older women who had both valid scored sleep data 
preceding and following each wake interval in ques-
tion. Participants were similarly distributed (P > 0.05) for 
demographics and selected health characteristics across 
the training (n = 625), test (n = 278), and validation 
(n = 209) sets (Table 1).

The AUC-ROC for both 1D CNN models developed for 
MASH (ActiGraph + Actiwatch or ActiGraph-only) were 
considered excellent (Fig.  2) with values of 0.991 and 
0.983 for the ActiGraph + Actiwatch and ActiGraph-only 
models, respectively. In addition, the accompanying Pre-
cision-Recall AUC were 0.993 and 0.989. Using Youden’s 
J-statistic to determine a cutoff probability threshold 
(0.698 and 0.729), the sensitivity of the models at each 
optimal point was 95.7% for the ActiGraph + Actiwatch 
model and 92.8% for the ActiGraph-only model. The 
specificity of the 1D CNN models was 95.5% and 95.6%, 
respectively.

Data harmonization
Of the 8560 sleep–wake compositions, 84.9% (n = 7270 
records) had valid scored sleep data (i.e., had both sleep 
onset and sleep offset). Of the remaining 15.1% of days 
(n = 1290 records), either of the 1D CNN models was 
applied to estimate (1) sleep offset (n = 32 days), (2) sleep 
onset (n = 503  days), or (3) both sleep offset and onset 
(n = 755 days) (Table 2).

With the sleep and wake intervals defined, 46.0% (3934 
of 8560) of days needed correction to the waking inter-
val. This was to address improper classification of at least 
one minute-level epoch as both sleep and wake (82.9%; 

https://github.com/jsw70/MASH
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Table 1  One-dimensional Convolutional Neural Network (1D CNN) SWAN follow-up visit 15 (2015–2017) participant characteristics, 
overall and by dataset

BMI body mass index

There were no statistically significant differences between the training, test, and validation datasets at the P = 0.05 level using t-tests for continuous variables or chi-
square tests for categorical variables

Characteristic Sample
(N = 1112)

Training set
(n = 625)

Test set
(n = 278)

Validation set
(n = 209)

% (n) % (n) % (n) % (n)

Age (M ± SD) 65.5 ± 2 65.4 ± 2 65.2 ± 2 65.8 ± 2

Race/ethnicity

 Black 25.8 (287) 27.8 (174) 23.7 (66) 22.5 (47)

 Chinese 12.9 (143) 13.0 (81) 15.1 (42) 9.6 (20)

 Hispanic 3.0 (33) 3.0 (19) 2.5 (7) 3.3 (7)

 Japanese 12.1 (134) 11.2 (70) 13.3 (37) 12.9 (27)

 White 46.3 (515) 45.0 (281) 45.3 (126) 51.7 (108)

Education

  < High school 4.0 (45) 5.0 (31) 2.5 (7) 3.3 (7)

 High school 14.9 (166) 13.9 (87) 16.2 (45) 16.3 (34)

 Some college 31.3 (348) 28.8 (180) 33.1 (92) 36.4 (76)

 College 22.8 (253) 23.5 (147) 21.6 (60) 22.0 (46)

 Post-college 26.3 (292) 28.5 (178) 25.2 (70) 21.1 (44)

 Missing 0.7 (8) 0.3 (2) 1.4 (4) 1.0 (2)

Obesity (BMI ≥ 30 kg/m2) 36.1 (401) 38.2 (239) 32.7 (91) 34.0 (71)

 Missing 1.0 (11) 1.0 (6) 1.1 (3) 1.0 (2)

Self-rated health

 Poor, fair, or good 47.3 (526) 47.8 (299) 49.3 (137) 43.1 (90)

 Missing 0.8 (9) 1.1 (7) 0.7 (2)

Difficulty walking one mile 36.5 (406) 39.4 (246) 34.2 (95) 31.1 (65)

Fig. 2  Receiver Operating Characteristic (ROC) curves with cutoff thresholds and sensitivity and specificity values
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3262 of 3934 days) or due to missing sleep data (672 of 
3934 days).

For days requiring correction, the average correc-
tion applied included a median (interquartile range 
[IQR]) of −  27.0 (−  115.0, 8.0) minutes of total wake 
time. The distribution of the MASH-corrected wake 
intervals smoothed out a cluster of days that the Choi 
algorithm (applied to ActiGraph data) classified as hav-
ing > 1200 min (20 h) of waking wear (Fig. 3). This finding 
is consistent regardless of whether the wake interval was 
corrected using scored sleep data (median [IQR] = − 21.0 
[−  98.0, 12.0] min of total wake time) or 1D CNN 

(median [IQR] = −  76.0 [−  150.0, −  14.0] min of total 
wake time) for prediction, even though the distribution 
of the wake intervals requiring 1D CNN correction were 
relatively more skewed.

Table  3 presents the time-use behavior estimates pre-
harmonization (e.g., prior to MASH implementation) 
and the estimates once harmonized using MASH. When 
compared to other waking behavior estimates (i.e., LLPA, 
HLPA, and MVPA) the distribution of the sedentary 
behavior estimate was most influenced once the wear 
intervals were corrected (Fig.  4). Specifically, sedentary 
behavior was corrected a median (IQR) of − 18.0 (− 93.0, 

Table 2  Number of days in the sample, MASH model used, and sleep–wake interval size

1D CNN one-dimensional convolutional neural network; MASH method for activity sleep harmonization

Reason Number of days
(N = 8560)

MASH model applied Sleep–wake 
interval size, 
hours
Mean (SD)

No sleep data are missing 7270 Valid scored sleep 24.04 (1.41)

Sleep data are missing 1290

 Only sleep onset data are missing 503 1D CNN 23.20 (2.35)

 Sleep offset data are missing on any day besides first day 32 1D CNN 23.92 (2.52)

 Both sleep onset and sleep offset data are missing 755 1D CNN 23.88 (1.68)

Fig. 3  Distribution of wake interval sizes between the uncorrected days and the corrected days, overall and by correction method
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2.0) min, whereas the other waking behavior types 
(LLPA + HLPA + MVPA) were corrected a median (IQR) 
of −  1.0 (−  4.0, 1.0) min. Paired t-test analysis results 
demonstrate MASH resulted in statistically significant 
reductions in all forms of activity; however, only seden-
tary behavior [t(8559) = −  34.2, P < 0.001] had a mean 
difference greater than 3 min. Because the wake interval 
correction process within MASH also simultaneously 
creates sleep intervals (in cases where the sleep data are 

missing), it was not possible to perform t-test analysis on 
sleep because a substantial portion of the data did not 
have an ‘uncorrected’ sleep measurement.

Participants had a mean (SD) of 6.7 (1.5) sleep–wake 
compositions. The final MASH harmonized dataset 
resulted in a mean (SD) sleep–wake composition interval 
size of 23.97 (1.52) hours. The interval sizes of the sleep–
wake compositions were similar across the MASH model 
applied (Table 2).

Table 3  Pre-harmonization and post MASH harmonization time-use estimates (N = 8560) days

MASH method for activity sleep harmonization
a Evenson vector magnitude (VM) cut point values were used to classify minutes as sedentary behavior (< 76 VMct·min−1), low light (76 to < 903 VMct·min−1) intensity 
(LLPA), high light (903 to < 2075 VMct·min−1) intensity (HLPA), and MVPA (≥ 2075 VMct·min−1)
b Pre-harmonization included 8024 days due to missing data

Time-use behaviora Pre-harmonization, 
minutes
Median (IQR)

MASH harmonization, 
minutes
Median (IQR)

Sedentary behavior 438 (344, 547) 419 (329, 512)

Low light intensity physical activity (LLPA) 277 (219, 337) 274 (216, 333)

High light intensity physical activity (HLPA) 137 (100, 181) 136 (99, 181)

Moderate to vigorous intensity physical activity (MVPA) 46 (24, 78) 45 (24, 78)

Sleepb 440 (378, 497) 444 (383, 502)

Fig. 4  Distribution of waking activity lengths between the uncorrected and corrected activity variables
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Discussion
Measuring time-use movement behaviors accurately 
across the continuous 24-h period is critical as these 
behaviors are interrelated and evidence suggests that 
the combined effects of these behaviors on health may 
be greater than their individual effects [34–36]. This 
had led to 24-h public health guidelines released by the 
World Health Organization [37] and by some countries 
(e.g., Australia [38], Canada [39, 40], New Zealand [41], 
South Africa [42]). Thus, accurate estimation of 24-h 
sleep–wake cycles, including the contributing behaviors, 
is paramount. We developed the Method for Activity 
Sleep Harmonization (MASH) to harmonize time-series 
data from two accelerometers that use two different 
placements (wrist and hip) to estimate behaviors com-
prising the 24-h period. This method creates night-day-
night pairings rather than constraining data to a fixed 
time period (e.g., midnight to midnight). We analyzed an 
interval of sleep followed by a subsequent waking inter-
val as a 24-h sleep–wake composition. This accounts 
for the compositional nature of behaviors used in time-
use epidemiology [1–3]. Developed on a large sample of 
older women, the findings suggest the MASH approach 
(1) minimized data loss due to missing sleep data and 
(2) improve precision of 24-h sleep–wake compositions. 
Together, these findings support the utility of MASH to 
harmonize sleep–wake data obtained from two devices 
and correct these data, as needed, to more precisely esti-
mate time-use movement behaviors for further analysis.

Physical activity and sleep have largely been separate 
disciplines, with each preferring certain devices and 
anatomical placement for field-based data collection. 
For measuring waking activities, specifically time spent 
within intensity categories, triaxial accelerometer place-
ment is most accurate at the hip [43, 44]. However, for 
sleep detection, reliable accelerometry measurement 
occurs on the wrist [19, 45, 46]. Findings from Full and 
colleagues suggest estimates of sleep duration using an 
ActiGraph worn on the hip were significantly higher from 
polysomnography (PSG), overestimating total sleep time 
by 37.8 (SD = 61.3) min [47]. This could be the reason the 
majority of corrections attributed to MASH were to fix 
instances where sleep was coded as sedentary behavior. 
Further, total volume of physical activity measured by 
wrist-worn devices (e.g., Actiwatch 2) have a weak cor-
relation (r = 0.26) with hip-worn devices and thus are 
not favorable for measuring physical activity [48]. Over-
estimation of sedentary behavior and underestimation of 
sleep can have detrimental effects to outcomes research. 
Sleep, in the absence of disturbances or disorders, is 
thought to be a restorative and health-promoting pro-
cess for the body [7], whereas excessive sedentary behav-
ior is associated with several diseases, including sleep 

disorders (e.g., insomnia, sleep apnea), and excess health-
care costs [8, 49, 50].

Choosing between a single device protocol or a pro-
tocol in which participants wear two or more devices 
concurrently, as in the current study, is largely up to 
researcher preferences. However, multiple-device proto-
cols may be necessary for independently funded ancillary 
studies to large prospective cohorts to reduce participant 
burden of wearing devices across many weeks of data 
collection. Placing multiple devices at different anatomi-
cal locations to increase precision of time-use behaviors 
has been previously implemented on the hip + thigh 
[51] and chest + thigh [52]. The MASH method provides 
an integral step in 24-h time-use assessment by joining 
accelerometry data from the hip + wrist for increased 
measurement precision. Prior to this method develop-
ment, researchers would need to weigh the decision of 
which behavior outcome could have poor performance 
accuracy within their study or have participants switch 
between wear locations, with the possibility of increas-
ing non-compliance [21]. Further, providing open-source 
code may help with data harmonization and protocol 
development across studies.

In addition to increasing 24-h measurement precision, 
MASH also minimizes data loss. MASH evaluates the 
epoch-level data and applies a classification algorithm 
that scores the epoch as either within a waking interval 
or within a sleeping interval. Therefore, although diary/
sleep data may be missing, night-day-night pairings could 
still be constructed. In our sample, a total of 15.1% of 
days (n = 1290 records) were missing either sleep onset, 
sleep offset, or both times from the sleep dataset. With-
out this classification algorithm, those days would be lost 
during analysis or would need to be imputed. Further, 
MASH can be used to create daily 24-h compositions 
rather than a single averaged daily estimate, which can 
have important implications for examining time-use pat-
terns of behaviors across the week and development of 
future intervention studies targeting these behaviors.

The limitations of MASH should be noted. This method 
was developed in a sample of community-dwelling older 
adult women (age range: 60–72  years). However, we do 
not believe this would change model development, and 
given the flexibility and utility of 1D CNN models, imple-
mentation of MASH in other studies and populations is 
achievable. In addition, MASH only removes waking data 
when the wake interval sizes are longer than the MASH 
prediction, which occurs in instances where the partici-
pant was likely wearing the ActiGraph monitor on the 
hip while sleeping. MASH is unable to determine activ-
ity behavior when data are missing due to not wearing 
the device during the waking interval, for example, if a 
participant woke up and did not immediately put on the 
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waking device. We did not calculate these data from the 
wrist-worn device as the Actiwatch 2 is not accurate for 
measuring physical activity [48] and we did not impute 
these minutes as we were unable to determine the true 
waking activity behavior. However, statistical techniques 
such as compositional data analysis (CoDA), which treat 
daily time-use movement behaviors as a composition 
that are translated to real space through the applica-
tion of coordinate systems and constrained to 1440 min 
[53], overcome non-wear issues. With MASH, the period 
within the resting and sleep intervals (e.g., sleep onset 
latency) is classified as sedentary behavior, which is sup-
ported by the Sedentary Behavior Research Network 
(SBRN)’s definition as ‘any waking behavior character-
ized by an energy expenditure ≤ 1.5 metabolic equiva-
lents, while in a sitting, reclining, or lying posture’ [54]. 
However, long sleep latency may have differential effects 
on health than sedentary behavior [55] and the health-
related importance of distinguishing this period requires 
further study [56]. Lastly, MASH only classifies the main 
(overnight) sleep interval and did not attempt to classify 
daytime sleeping (napping) from either device. Despite 
the limitations, we built MASH and the 1D CNN predic-
tion models using a large sample of women (N = 1285) 
who wore two devices (hip + wrist) concurrently. The 
models had excellent classification and there were no 
significant differences between the scored sleep and 1D 
CNN prediction models. Using the 1D CNN can help 
minimize data loss for days when participants forget to 
wear the wrist device or there was a device malfunction.

Conclusions
MASH is a dataset harmonization method for merging 
sleep and waking activity behaviors measured concur-
rently from multiple devices (hip + wrist). The devices 
were chosen because of their accuracy in measuring wak-
ing activity behaviors (ActiGraph GT3X+) and sleep 
(Actiwatch 2). We built MASH to merge separate, inde-
pendent datasets, minimize data loss for missing sleep 
data, and with the flexibility that this process can be rep-
licated in other studies that simultaneously collect sleep 
and waking behaviors using two devices. Researchers can 
use the MASH approach to correct sleep–wake harmo-
nization, construct daily-level compositions, and aggre-
gate to averaged daily values as needed. Ultimately, this 
approach increases precision of the physical activity and 
sleep estimates which may improve the accuracy of the 
observed measures of association with health outcomes.
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